Watershed Emergency Response Team (WERT) and Post-Fire Watershed Restoration/Recovery

SWRR Meeting - May 3rd, 2018

(used with permission from Dr. Lee Macdonald – Colorado State University)

Post-Fire

(used with permission from Dr. Lee Macdonald – Colorado State University)

WERT Primary Goals

Assessing soil burn severity

- Assist Communities
- A rapid evaluation of values-atrisk (VARs) subject to post-fire hazards, including:
 - -Debris Flows
 - -Flooding
 - -Rock fall
- Life-safety-property focus

WERT Process

- Develop soil burn severity map
- Spatially explicit modeling and evaluation of post-fire debris flow potential, erosion rates, and peak flow
- Identification of values-at-risk (VARs) on non-federal land
- Hazard determination for VARs
- Preliminary/general recommendations to mitigate hazard(s)
- Communication to affected and/or responsible parties

Field Evaluation

Assessing debris flow and flooding hazards along Castle Rock Road – Nuns Fire

- Performed by licensed professionals
 - Engineering geologists, civil engineers, hydrologists
- Relative hazard to life and property determined by a combination of:
 - Professional judgement based on geomorphic evidence
 - Modeling
 - Spatial data (e.g., proximity to mapped flood inundation zones)

Napa Sonoma Petalum **Burn Severity Map With** BARC Field Verification - Points BARC Field Verification - Polygons Field Site Locations Nuns Fire Perimeter (Per GTAC as of 10/19/17) □California County Boundaries

Soil Burn Severity Mapping

- Soil burn severity map gives
 WERT a spatially-distributed
 view of post-fire soil alteration
 - Drives hazard evaluation and modeling
- Generated from satellite imagery and validated through field assessment

Value at Risk (points) Value at Risk (polygon) Basin Debris Flow Probability 0-20% Likelihood of a debris flow in response to the design rainstorm with a peak 15-minute rainfall CA-LNU-010105 Projection: NAD83 California Teale Albers

Spatially-Explicit Modeling

- USGS Post-Fire Debris Flow model
 - Basin and segment probability
 - -Volumetric debris yield
- Unvalidated for North Bay fire area

ERMiT—webbased tool to predict surface erosion from pre- and postfire hillslopes

Pre-fire: 0.25 t/ac

Post-fire: 12.1 t/ac

50% probability or 2-yr event

Atlas Peak Road Gaging Station - Peak Discharge Frequency Analysis Discharges Based on Milliken Watershed Model and 50 years of Atlas Peak Precipitation Data, Regional Skew of -0.88 8,000 Peak Discharge December 2005 Storm Event 6,320 dfs (30-Year Event) 7,000 6,000 FEMA 100-Year Discharge 4,488 cfs 7.5-year Return Frequency (S) 65,000 4,000 Corps of Engineers 100-Year Discharge 4,910 cfs 10-Year Return Frequency 3,000 2,000 1,000 Probability of Occurance

Post-Fire Runoff Prediction

Pour Point ID	Description	Flow Increase from Pre-Fire Conditions*	Post-Fire Adjusted Return Interval*
HWY	HWY 128 small drainage	90%	~150
WHT	White Ck above Wooden Valley Rd	37%	30
MIL3	Milliken Reservoir	32%	25
MIL2	Milliken Ck West Fk at Atlas Peak Rd	30%	25
HAG	Hagan Ck below 3 rd Ave	27%	20 - 25
MIL1	Milliken Ck at Westgate Dr	27%	20 - 25
SOD	Soda Ck above Silverado Trail	27%	20 - 25
WVC	Wooden Valley Ck above Wooden Valley Rd	23%	20
SAR	Sarco Ck at Vichy Ave	21%	15 - 20
GRE	Green Valley Ck at Twin Cks Dr	20%	15 - 20
CAP	Capell Ck above Middle Ck	17%	15 - 20
TUL	Tulucay / Murphy Ck at 4 th Ave	15%	15
REC	Rector Reservoir	5%	10 - 12

WERT is a Facilitator of Science/Research

John Moody (USGS), Thomas Fire – Post-fire K_{sat} and sorptivity

Valley Fire – Boggs Mountain Demonstration State Forest

Figure 2.8: Sediment yields by swale and burn severity at BMDSF from October 2015 to June 2016. No additional sediment was produced through September 2016.

Using **WERT Products** Identify Post-Fire Restoration **Opportunities**

WERT Products Can:

- Provide spatiallyexplicit view of postfire processes and hazards
- Can allow local entities/stakeholders to focus efforts on values-at-risk most affected by post-fire watershed conditions

Contact:

Drew Coe

CAL FIRE

Watershed Protection Program

drew.coe@fire.ca.gov

530-224-3274 (Office)

916-217-4764 (Cell)